Panel on Neuro-glia Mechanisms of Chronic Pain

A Retrospective and the Role of Microglia & Astrocytes in Chronic Pain Mechanisms

Ru-Rong Ji, PhD

Department of Anesthesiology
Department of Neurobiology
Duke University Medical Center
Microglia and pain: 1043
Astrocytes and pain: 769
Satellite glial cells and pain: 163
Oligodendrocytes: a few?

Glia and pain: 1,717
Neuron and pain: 22,957
Glia have different activation states in chronic pain

1. Gliosis: Changes of glial markers and morphology

2. UP-regulation of glial receptors and channels

3. Intracellular signaling: Phosphorylation of MAP kinases

4. Production of glial mediators

Release of glial mediators (pain mediators)

Interaction with neurons and central sensitization

Chronic pain

Ji, Berta, and Nedergaard, *Pain*, 2013
I. Microglia and chronic pain

II. Astroglia and chronic pain

III. Gliopathy drives chronic pain

IV. Clinical significance & future directions
Macrophages of the CNS

- Major effectors of the CNS innate response
- Express CD11b, IBA-1, CX3CR1
- Major source of cytokines in the CNS (TNF-α, IL-1β, IL-18)
- Produce growth factor BDNF
- Microgliosis (reactive) after nerve injury
- Pathogenesis of neuropathic pain
- Acute inflammatory pain?
Time-dependent microglia activation after CCI

Mechanical Allodynia

Heat Hyperalgesia

Days after nerve injury (CCI)
Phosphorylation of p38 MAPK after SNI

p-p38 / CD11b (OX-42)

Numerous animal studies in different models (Intrathecal injection)

Some human studies (Systematic route) CNS effects?
Inflammatory pain
Postoperative pain

Activators
- ATP, CSF-1
- CX3CL1, CCL21, CCL2
- Caspase-6, MMP-9, cathepsin S

Receptors
- P2X4, P2X7, P2Y12, CSF1R
- CX3CR1, CCR2
- TLR4, TLR2

Microglial mediators
- TNF
- IL-1β
- IL-18
- BDNF

Tissue injury
- Surgery

Nerve injury
- Cancer

Chronic opioid

Neuropathic pain
- Opioid tolerance
- Hyperalgesia

Cancer pain

Postoperative pain

Inflammatory pain

Intracellular signaling in microglia

P-p38
Single-cell analysis for microglial gene expression

Microglial cell collection from spinal cord slice of Cx3cr1-GFP mice

Single cell PCR

Microglia are primary source of TNF in the spinal cord.

Berta et al., JCI, 2014
Caspase-6 releases TNF-α from microglia to modulate synaptic transmission.

![Graph showing TNF-α release](image)

- TNF-α
- IL-6
- IL-1β

![Diagram of the nervous system](image)

- DRG neuron primary afferent
- Microglia
- Excitatory interneuron
- Dorsal horn
- Pre-synaptic
- Post-synaptic
- Microglia
- Astrocyte
- TrPV1
- Glu
- TNF-α
- CASP6

![Patch clamp recording](image)

- TNF-α (10 ng/ml)
- Capsaicin (1 µM)
- 20 pA
- 1 min

Berta et al., *JCI*, 2014
Astrocytes

- Most abundant cells in the CNS
- Express GFAP, GLT1, Cx43, ALDH1-L1
- Provide structural and tropical support for neurons
- Control synapse formation & insulate synapses
- Interact with blood vessels
- Form networks via gap junctions
- Form glymphatic system to clear toxins
- Maintain glutamate and K⁺ homeostasis
- Release gliotransmitters such as ATP, glutamate, cytokines, chemokines
Persistent activation of astrocytes in neuropathic pain

CCI, 10 days

CCI, 21 days

GFAP

Injury side
Astrocytic Cx43 maintains late-phase neuropathic pain

Chen et al., Brain, 2014

CBX: carbenoxolone
Gap junction blocker

Peptide inhibitor of Cx43

Cx43 / GFAP
Cx43 modulates synaptic transmission after CCI 3 weeks

Patch clamp recording in I1o neurons
Cx43 maintains neuropathic pain
via CXCL1 release from astrocytes
Astrocytes produce chemokines via JNK

Chemokines (Astrocytes)
- CCL2/MCP-1
- CXCL1/KC

Chemokine receptors (Neurons)
- CCR2
- CXCR2

Gao and Ji, Neurotherapeutics, 2010
Different types of spinal cord astrocytes

CCI injury

GFAP

Merge GFAP / Aldh1

Aldh1-EGFP

ALDH1-L1 (Aldehyde dehydrogenase 1, L1)
Gliopathy in chronic pain: Astrocyte dysregulation

- **Glutamate homeostasis**
 - GLT1, GLAST
 - Hyper-excitability

- **Potassium homeostasis**
 - Kv4.1, Kv5.1
 - Hyper-excitability

- **Water homeostasis**
 - AQP4 dysfunction
 - Edema

- **Chemokines**
 - (CXCL1, CCL2)

- **Long-range signaling**
 - Cx43 dysfunction

- **Paracrine signaling**
 - ATP, glutamate

Modified from Verkhratsky et al., *ASN Neuro*, 2012

Ji et al., *Pain*, 2013
Targeting glial cells for chronic pain

- Chronic pain is a result of “gliopathy”.
- Microglia and astrocytes are important players in chronic pain development and maintenance.
- Glia modulate pain via “neuro-glia interactions
- Glia-produced mediators (cytokines and chemokines) are neuromodulators and can powerfully modulate synaptic transmission.

Strategies

- Cytokine inhibitors (TNF, IL-1β, IL-6)
- Anti-inflammatory cytokines IL-10, TGF-β
- Chemokine inhibitors (CXCL1/CCR2, CCL2/CXCR2)
- MAPK inhibitors (p38, JNK, ERK)
- Proteases inhibitors (MMP-9, MMP-2, CASP6, Cathepsin S)
- Cx43, P2X7, TLR4 inhibitors
- Cell therapy (bone marrow stem cells)
What can we learn from cancer therapy?

Cancer

- Chemotherapy
- Immune therapy
- Combination therapy

Chronic Pain

- Neuron-targeting therapy
- Glia-targeting therapy
- Combination therapy

Strategies

- Multiple drugs to target neurons and glia separately
- One drug that can target both neurons and glia
Biosynthesis of resolvins and neuroprotectin
(Anti-inflammatory and pro-resolution mediators)

EPA
- Aspirin:COX-2
- **P450**
- **microbial**

DHA
- Aspirin:COX-2
- **LOX**

17R-Resolvin D Series
Acetylated COX-2

17S-Resolvin D Series
Lipoxygenase mechanism

Epoxidation

LOX

Neuroprotectin D1 (NPD1)

18R-H(p)EPE

RvE1

RvD1

RvD2
Neuropathic pain relief by neuroprotectin D1 (NPD1)

Xu et al., *Annals of Neurology*, 2013

![Chemical structure of NPD1](image1)

Mechanical Allodynia

- **Sham**
- **Vehicle**
- **NPD1, 300 ng**

<table>
<thead>
<tr>
<th>Time after CCI</th>
<th>Paw withdrawal threshold (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>1.6</td>
</tr>
<tr>
<td>3 d</td>
<td>1.4 ± 0.2</td>
</tr>
<tr>
<td>7 d</td>
<td>1.4 ± 0.2</td>
</tr>
<tr>
<td>14 d</td>
<td>1.2 ± 0.2</td>
</tr>
<tr>
<td>21 d</td>
<td>1.2 ± 0.2</td>
</tr>
<tr>
<td>28 d</td>
<td>1.2 ± 0.2</td>
</tr>
</tbody>
</table>

Mechanical Allodynia

- **Vehicle**
- **NPD1, 20 ng**
- **NPD1, 100 ng**
- **NPD1, 500 ng**
- **DHA, 100 μg**

<table>
<thead>
<tr>
<th>Time after i.t. injection</th>
<th>Paw withdrawal threshold (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>1.6</td>
</tr>
<tr>
<td>CCI 2 w</td>
<td>1.0</td>
</tr>
<tr>
<td>0.5 h</td>
<td>0.6 ± 0.2</td>
</tr>
<tr>
<td>1 h</td>
<td>0.8 ± 0.2</td>
</tr>
<tr>
<td>3 h</td>
<td>1.2 ± 0.2</td>
</tr>
<tr>
<td>24 h</td>
<td>1.4 ± 0.2</td>
</tr>
</tbody>
</table>

Normalized PWT (% of BL)

- **NPD1**
- **Gabapentin**

![Graph showing normalized PWT (%) of BL](image2)

Xu et al., *Annals of Neurology*, 2013
Neuroprotectin D1 (NPD1) modulates glial and neuronal activities after nerve injury

Neuroinflammation in the spinal cord after CCI

Long-term potentiation in the spinal cord

Xu et al., Annals of Neurology, 2013
Neuroprotectin D1 (NPD1) based therapies

Glia activation and Neuroinflammation

- TNF-α
- IL-1β
- CCL2
- CXCL1
- BDNF

Maladaptive synaptic plasticity

Chronic pain

NPD1

- Anti-inflammation
- Pro-resolution
- Very safe
- Inhibit TRPV1 function
- Inhibit neural plasticity
- Inhibit glial activation
- Promote regeneration
- Protect neurons
- Limitation: unstable

- **NPD1**: Prevention of nerve trauma and chemotherapy induced neuropathic pain
- **Small molecule receptor agonist of NPD1R**: Treatment of established chronic pain
Future directions

- Identify new markers for microglia and astrocytes
- Unbiased approaches to screen mediators produced by glial cells
- Further investigations into neuro-glia interactions
- Other glial types (satellite glia, oligodendrocytes)
- Selective tools to target glia (chemical genetics, DREADD)
- Sex-dependent glial signaling
- Age-dependent glial signaling
- Glia activation in human brain
- Glymphatic system in chronic pain
Acknowledgements

Supported by NIH grants
R01DE17794, DE22743, NS54932
(Glial signaling in pain)
R01NS67686 and NS87988
(Resolvins and protectin)

Maiken Nedergaard
Charles Serhan

Yong-Jing Gao, China
Chul-Kyu Park, Korea
Sarah Taves, UNC
Shan-Xue Jin, Boston
Zhi-Ye Zhuang, U of Florida
Yusuhiko Kawasaki, Japan
Ling Zhang, Shanghai
Yong-Ray Wen, Taiwan
Ping-Heng Tan, Taiwan
Ning Lu, Shanghai
Marc Suter, Switzerland

Collaborators
Isabelle Decosterd, Lausanne
Clifford Woolf, Harvard
Gary Strichartz, BWH, Harvard
Charles Berde, Harvard
Eng Lo, MGH, Harvard
Gabriel Corfas, Harvard
Michael Loggia, MGH, Harvard
Yu-Qiu Zhang, Fudan, Shanghai
Jeff Mogil, McGill, Montreal
Maria Fitzgerald, UCL, UK
Seok-Yong Lee, Duke
Cagla Eroglu, Duke