Imaging glial activation in human pain disorders

Marco L. Loggia, PhD
Assistant Professor of Radiology, Harvard Medical School
Associate Director, Center for Integrative Pain NeuroImaging
A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital
Hundreds of animal studies implicate *glial cells* in pain

- Microglia and astrocytes ‘activate’ in animal models of pain
- Activated glia produce cytokines and other pro-inflammatory mediators
- Inhibition of glial activation inhibits/reverses pain
This is a world-wide effort

USA
L. Watkins - J. Deleo - R.R. Ji
P. Dougherty - S. Carlton - G. Gebhart
C. Woolf - A. Basbaum
K. Ren - R. Dubner - T. Yaksh
E. Milligan - S. Waxman - H.R. Weng
C. Hulsebosch - D. Fink
P. Mantyh - L. Jasmin - R. LaMotte
F. Wei - S. Tang - E. Romero-Sandoval
P. Haydon - K. McAuthor - T Berta - C. Cahill

Canada
M. Salter - Y. De Koninck - J. Mogil;
J. Zhang - B. Sessle - G. Bennett

UK
S. McMahon
M. Malcangio
D. Bennett
S. Beggs
A. Rice
M. Fitzgerald

Germany
R. Kuner, C. Sommer

Switzerland
I. Decosterd / M. Suter

Israel
M. Hanani

China
Y.Q. Zhang
Z.Q. Zhao
Y.G. Gao
X.G. Liu
W. You
Y.C. Li

Korea
S.B. Oh
S. Lee

Japan
Inoue / Tsuda
K. Noguchi
K. Iwata

Taiwan
Y.R. Wen
C. Wong

Australia
M. Hutchinson

PubMed Search for Glia and Pain

All around the world …

Slide courtesy of Ru-Rong Ji (modified)
Do glial cells have a role in human pain?

- Hundreds of animal studies implicate glial cells in pain
 - Microglia and astrocytes ‘activate’ in animal models of pain
 - Activated glia produce cytokines and other pro-inflammatory mediators
- Inhibition of glial activation inhibits/reverses pain

Tsuda et al., Nature 2003
Gao and Ji, Neurotherapeutics 2010

http://www.atlantapainmanagementcenters.com
Can we “see” glial activation in vivo?

- Post-mortem studies in the human spinal cord
 - Complex Regional Pain Syndrome (Del Valle et al., Brain Behavior and Immunity 2009)
 - HIV neuropathy (Shi et al., J Neurosci 2012)
The Translocator protein (18 kDa) (TSPO)

- A five transmembrane domain protein mainly situated in the outer mitochondrial membrane
- Involved in steroid hormone synthesis (Fan et al., PNAS 2015)
 - however see Banati et al., Nat Commun 2014

Rupprecht et al., Nature Rev Drug Discov 2010
TSPO as a marker of glial activation

- Very low basal expression in the healthy CNS
- Upregulated by activated microglia and astrocytes
 - Experimental autoimmune encephalomyelitis
 - Multiple sclerosis
 - HIV encephalitis
 - Ischemia
 - Alzheimer’s Disease
 - Animal pain models
 - etc

Spinal nerve ligation (rat)

Wei et al., J Neurosci 2013
Liu et al., Pain 2016
TSPO as a marker of glial activation

TSPO can be imaged in vivo using PET (Albrecht et al., ACS Chem Neurosci 2016)

[¹¹C]PK11195
- Prototypical ligand
- Low specific-to-nonspecific binding ratio

[¹¹C]PBR28
- Second generation ligand
- 80-fold higher specific binding in primate brain (Kreisl et al., Neuroimage 2010)
[11C]PBR28 as a sensitive TSPO ligand

Ischemic stroke (rat model)

Huntington’s disease

Amyotrophic Lateral Sclerosis

Multiple sclerosis

Lois et al., in preparation (Diana Rosas / Jacob Hooker’s labs)

Zurcher, Loggia et al., Neuroimage Clin 2015
TSPO…

- is upregulated in activated glial cells
- can be imaged with PET using $[^{11}\text{C}]$PBR28

Do chronic pain patients demonstrate glial activation, as assessed by increased $[^{11}\text{C}]$PBR28 binding?
Evidence for brain glial activation in chronic pain patients

Marco L. Loggia,1,2,* Daniel B. Chonde,1 Oluwaseun Akeju,3 Grae Arabasz,1 Ciprian Catana,1 Robert R. Edwards,2,4 Elena Hill,5 Shirley Hsu,1 David Izquierdo-Garcia,1 Ru-Rong Ji,2,6 Misha Riley,1 Ajay D. Wasan,2,4,7 Nicole R. Zürcher,1 Daniel S. Albrecht,1 Mark G. Vangel,1 Bruce R. Rosen,1,8 Vitaly Napadow1,2,9 and Jacob M. Hooker1
Methods

Matched-pairs design

- 19 cLBP patients + 25 controls initially enrolled
- 9 matching-pairs identified, matching for:
 - sex
 - age
 - Ala147Thr polymorphism in the TSPO gene
 (Owen et al., J Cereb Flow Metab 2012)

Diagram:

- cLBP
- controls
- Female 52 y.o. Ala/Ala
- Female 52 y.o. Ala/Thr
- Female 52 y.o. Ala/Ala

unpublished data
Methods

- Integrated PET/MR scanning
- Up to 15 mCi of $[^{11}\text{C}]\text{PBR28}$
- Standardized Uptake Values, normalized by whole brain (SUVR)
- Pain levels and blood levels of cytokines (IL-6, IL-1β, TNF-\(\alpha\))

Albrecht et al., in preparation
Group differences

Loggia et al., Brain 2015
Individual data

Median cLBP image (n=10)

thalamus

Individual data

<table>
<thead>
<tr>
<th>Ala/Thr</th>
<th>Ala/Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

controls

matching pair 0.5 1.6
Test-retest reliability

Same patient, scanned twice 3.5 months apart

Loggia et al., unpublished
Is glial activation in S1/M1 somatotopically organized?

- Paracentral lobule
- Postcentral gyrus

Pain fMRI studies

- Leg pain
 Loggia et al., Pain 2012

- Lumbar pain
 Kim et al. (Napadow lab), in preparation
Regression analyses

![Graphs showing correlation between pain at scan and SUVR values](image-url)
TSPO knock-down: ↑ inflammation

TSPO overexpression ↓ Inflammation

TSPO agonists: allodynia & hyperalgesia

TSPO appears to limit the magnitude of inflammatory responses after their initiation.
Spinal glial activation
(collaboration with Yi Zhang, MD, PhD)

Albrecht, et al (in preparation)

![Image of spine MRI with T11-T12 cord highlighted]

T11-T12 Cord SUVR

- **Controls** (n=4)
- **Sciatica** (n=9)

[Graph showing SUVR values for different groups]

Albrecht, et al (in preparation)
Conclusions

- Chronic pain patients demonstrate **TSPO elevations** in brain and (possibly) spinal cord.

- Since TSPO is a marker of glial activation, this suggests that human **chronic pain** is accompanied by glial activation.

- Glial activation may represent a **therapeutic target** for chronic pain, as predicted by animal studies.
Questions/Future directions

- Do other pain conditions also demonstrate TSPO upregulation?
- Do different pain disorders have different ‘glial signatures’?
- Can glial inhibitors and TSPO ligands be used to treat clinical pain?
- Can glial imaging predict who develops chronic pain?
Thanks to...

- Jacob Hooker
- Daniel Albrecht
- Grae Arabasz
- Nazem Atassi
- Vanessa Barth
- Ciprian Catana
- Daniel Chonde
- Rob Edwards
- Doug Greve
- Nicolas Guehl
- Elena Hill
- Shirley Hsu
- David Izquierdo-Garcia
- Ru-Rong Ji
- Oluwaseun Johnson-Akeju
- Jieungchan Kim
- Patti McCarthy
- Norman Kettner
- Ishtiaq Mawla
- Vitaly Napadow
- Marc Normandin
- Ekaterina Protsenko
- Misha Riley
- Bruce Rosen
- Adam Schwartz
- Sergey Shcherbinin
- Mark Vangel
- Ajay Wasan
- Dustin Wooten
- Marlene Wentworth
- Yi Zhang
- MGH Clinical Research Center